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Movement, activity and action: the role of
knowledge in the perception of motion

AARON F. BOBICK

MITMedia Laboratory, 20 Ames Street, Cambridge, MA 02139, USA (bobick@media.mit.edu)

SUMMARY

This paper presents several approaches to the machine perception of motion and discusses the role and
levels of knowledge in each. In particular, di¡erent techniques of motion understanding as focusing on
one of movement, activity or action are described. Movements are the most atomic primitives, requiring no
contextual or sequence knowledge to be recognized; movement is often addressed using either view-invar-
iant or view-speci¢c geometric techniques. Activity refers to sequences of movements or states, where the
only real knowledge required is the statistics of the sequence; much of the recent work in gesture under-
standing falls within this category of motion perception. Finally, actions are larger-scale events, which
typically include interaction with the environment and causal relationships; action understanding straddles
the grey division between perception and cognition, computer vision and arti¢cial intelligence. These
levels are illustrated with examples drawn mostly from the group's work in understanding motion in
video imagery. It is argued that the utility of such a division is that it makes explicit the representational
competencies and manipulations necessary for perception.

1. INTRODUCTION

Recently, there has been a shift in computer vision from
the processing of static images to the consideration of
video sequences. The majority of previous work on
sequences of images has focused on recovering the
geometry of the sceneöstructure from motion, the
camera motionöegomotion, or the motion of the pixels
themselvesöoptic £ow (Cedras & Shah 1994). Current
research, however, has begun to investigate the recogni-
tion of the action taking place in the scene. The
fundamental question being addressed is no longer
`how are things moving?' but `what is happening?'
(Bobick 1996).

However, there has been much confusion about
exactly which interpretation problems constitute
understanding action. For example, Polana & Nelson
(1994) and Shavit & Jepson (1993) focus on direct
motion properties of the image pixels to detect activities
such as walking or running. There is no knowledge
about time, sequence, or causality embedded in the
interpretation process. The àction' is coded strictly in
the statistics of image motion. Jumping, for example,
has a particular signature in a local spatiotemporal
region of the image sequence.

In sharp contrast is work such as that by Siskind
(1995) and Mann et al. (1996). In these approaches the
interpretation of the motion of objects is accomplished
by analysing the action in terms of a qualitative physics
description. Mann's system understands that the
proposition of an attachment to an activeöself-
propelledömoving object is adequate to explain the

movement of a passive entity. In these systems, under-
standing action implies producing a semantically rich
description that includes primitives such as `pick-up' or
`bounce'. To produce such descriptions requires a repre-
sentation of the causal relations in qualitative physics;
often an extended representation of time, as opposed
to an instantaneous or signal-based view, is needed as
well.

The goal of this paper is to analyse various
approaches to understanding motion with respect to
the nature and amount of the knowledge required.
Drawing mostly from examples of our own work, I will
propose three levels of motion-understanding problems
labelled, in increasing order of knowledge implied, as
movement, activity and action. The advantage of
considering motion interpretation problems this way is
that upon presentation of an algorithm or application
task one can immediately compare the work to other
approaches, and in particular consider the competence
of the representation and knowledge employed.

Before continuing, it is necessary to note the
pioneering work of Hans Nagel in the general area of
machine perception of motion (Nagel 1977), and in the
speci¢c endeavor of attempting to characterize motion
understanding problems (Nagel 1988). His taxonomy of
c̀hange, event, verb, episode, history' re£ects di¡erent
dimensions of the problem than those discussed here,
but it does provide an interesting alternative view. The
1988 paper begins with the sentence: `Today, the design
of a program which `̀ understands'' image sequences
appears an ambitious but not totally unrealistic
research goal.' It still feels ambitious.
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2 . PERCEPTION OF MOTION:
MOVEMENT, ACTIVITY AND ACTION

Suppose we wish to construct a system that recog-
nizes di¡erent motions in a particular application
domain: a baseball game. Let us consider three distinct
àctions' one might want to identify: swinging the bat,
pitching the ball and tagging out a runner. In this
section we will argue that these three tasks are illustra-
tive of three classes of motion-understanding problems
and that the techniques necessary to recognize them
will di¡er in the type of knowledge required and how
that knowledge is applied.

If one observes numerous players swinging a bat one
would see little variation in the motion.While the exact
stance and con¢guration of the static bat prior to the
swing may vary, the motion itself is predictably similar
from one instance to the next. We say `predictably'
because the physical dynamics of the tasköacceler-
ating a stick to a speed su¤cient to propel the ball
(hopefully) 450 feetöand the kinematics of the
human actuator constrain the motion to be performed
in a particular manner.
We term this type of motion a movementöa motion

whose execution is consistent and easily characterized
by a de¢nite space^time trajectory in some con¢gura-
tion space (in this case the kinematics of the human
body). For a given viewing condition execution consis-
tency implies consistency of appearance: the
appearance of the motion can be described reliably in
terms of the motion of the pixels. The pixel-based
description of the motion under di¡erent viewing
conditions is the only knowledge required to see the
movement.

Approaches to the perception of movements include
the previously mentioned work by Polana & Nelson
(1994) and Shavit & Jepson (1993). These techniques
are based on periodicity measurements of the pixels or
blobs undergoing motion. In ½ 3 we will describe two
techniques developed in our laboratory for recognizing
human movements.
Pitching a baseball involves many more steps than

hitting. Typically, but not always, a pitch involves (i)
bringing the arms together in front of the body to
achieve balance on two feet; (ii) swinging the arms
back; (iii) kicking the front leg up while leaning
back; (iv) delivering the pitch. (Apologies to connois-
seurs of the game; the descriptions here are simpli¢ed
approximations.) Some instances diminish the e¡ort
or reduce the time put into one phase or another, or
may even eliminate a stage entirely. The motion is no
longer a single, primitive, consistent movement.
Rather, it is an activity: a statistical sequence of move-
ments. Recognition of such a motion requires
knowledge about both the appearance of each consti-
tuent movement and the statistical properties of the
temporal sequence.

An important domain area that requires addressing
activity is that of recognizing gait. Rohr (1994) and
Niyogi & Adelson (1994) make an explicit model of
the sequence of movements or con¢gurations that form
the activity of walking. In both of these approaches the
sequence is ¢xed and deterministic. The work by Black

& Yacoob (1995) on understanding facial expression
coded a qualitative variation over time of the shape of
face features.

The recent surge in interest in hidden Markov models
(HMMs) to process video sequences re£ects the goal of
explicitly representing statistical sequential informa-
tion. One of the earlier e¡orts is by Starner & Pentland
(1995) where HMMs are used to understand American
sign language (ASL); the success HMMs have attained
in the speech community was a strong motivation to
apply them to the analogous ASL task. In section 4 we
will describe some recent work in our laboratory that
focuses on how activities may not be represented easily
by a single feature set; as the activity progresses the
underlying representation may need to vary.

Finally, what does it take to see a runner being
tagged out? Semantically, the description is straightfor-
ward: a ¢elder with the ball causes his glove to come in
contact with a base-runner who is not touching a base
at the time. Visually, however, the appearance is di¤-
cult to de¢ne or describe due to the variability of how
the movements may be made. The motion to be recog-
nized needs to be understood in a context: the best
explanation of the sequence of movements is that the
¢elder is intending to tag the runner which is why he
is moving his arm down while the runner is trying to
get to the nearest base. Tagging a runner is an action
which we de¢ne to include semantic primitives relating
to the context of the motion. For a system to recognize
actions it must include a rich knowledge base about the
domain and be able to hypothesize and evaluate
possible semantic descriptions of the observed motion.

As de¢ned, actions are at the boundary of where
perception meets cognition. Indeed, researchers
proposing formal theories of semantics and inference of
action (Schank 1975; Jackendorf 1990; Israel et al. 1991)
address motion at this level of analysis. Being primarily
focused on computer vision my goal is to stay as
connected to the visual signal as possible, where prede-
¢ned actions (e.g. `tagging out a runner' or `mixing
ingredients') and particular semantic labels (e.g. `base-
runner' or c̀hef ') have direct visual correlates. Mann et
al. (1996) accomplish this by postulating that certain
behaviours suggest particular causal relationships, and
that those relationships have visual consequences that
can be veri¢ed. In ½ 5 we brie£y outline a system we
have developed that uses logical descriptions of actions
to deduce visual correlates; these correlates are then
used to control the selection of vision routines.

Inthe following three sectionswe describe some results
in computer visionömostly from our laboratoryöthat
re£ect the levels described here. Our main goal is to
focus on the knowledge and the representation of time
employed by each set of techniques. At the conclusion of
the paper we will discuss the utility of the taxonomy of
themotion-understanding problems presented.

3. RECOGNITION OF MOVEMENT

Two recent e¡orts in our research group have focused
on the direct recognition of movement. The ¢rst case,
which we mention only brie£y, is work on the recogni-
tion of ballet steps (Campbell & Bobick 1995). The
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approach we develop is based on the idea that di¡erent
categorical movements, e.g. plië or relevë, each embody
a di¡erent set of constraints on the motion of the body
parts. These constraints are most easily observed in a

phase-space that relates the independent variables of
the body motion. This work presumes that the under-
lying three-dimensional kinematics of the body are
recovered from video (e.g. using a method such as that
of Gavrilla & Davis (1996)). Our question is not how to
recover the three-dimensional structure; rather, given
that structure, how do you see a plië ?

Figure 1 illustrates an example. The phase plot in
graph (a) displays the relation between the ankle angle
and the knee angle of one leg of a dancer performing a
wide variety of ballet steps. Graph (b) contains only
those points recorded during plië steps. Because the
tight constraint in (b) is not generally in force during
other moves, detecting the presence of this relationship
indicates the possibility of a plië being performed. By
automatically learning from training data which sets of
constraints are highly diagnostic of particular motions,
we can build constraint set detectors to recognize the
movements. Note that this technique is only applicable
to the recognition of atomic movements; in this
approach sequences of steps can only be recognized if
each individual movement is detected.

A more generic movement recognition method is
embodied in our recent work on temporal templates which
aims for the direct recognition of movement from the
motion in the imagery. Consider an extremely blurred
sequence of action; a few frames of one such example are
shown in ¢gure 2. Evenwith almost no structure present
in each frame, people can trivially recognize the move-
ment as someone sitting when the frames are displayed
as a video sequence. Such capabilities argue for recog-
nizing action from the motion itself, as opposed to ¢rst
reconstructing a three-dimensional model of a person,
and then recognizing the action of the model. (Example
sequences are available on the Web at http://vismod/
www.media.mit.edu/vismod/archive.)

In Bobick & Davis (1996a,b) and Davis & Bobick
(1997) we propose a view-based representation and
recognition theory that decomposes motion-based
recognition into ¢rst describing where there is motion
(the spatial pattern) and then describing how the
motion is moving. The basic idea is that we project the
temporal pattern of motion into a single, image-based
representationöa temporal template.

Movement, activity and action A. F. Bobick 1259
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Figure 1. Two variable phase plots (ankle angle versus
knee angle) for (a) a wide variety of ballet moves, and (b)
points during plië moves. The simple curve in the second
plot represents a detectable constraint in force during the
execution of a plië.

(a) (b) (c) (d)Frame 5 Frame 15 Frame 25 Frame 35

Figure 2. Selected frames from video of someone performing an action. Even with almost no structure present in each frame
people can trivially recognize the action as someone sitting.
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The top row of ¢gure 3a contains key frames of a
sitting sequence. The bottom row displays cumulative
binary motion imagesöto be described momen-
tarilyöcomputed from the start frame to the
corresponding frame above. As expected, the
sequence sweeps out a particular region of the
image; our claim is that the shape of that region can
be used to suggest both the movement occurring and
the viewing condition, in this case the horizontal
viewing angle.

We refer to these binary cumulative motion images
as motion-energy images (MEIs). Let I(x,y,t) be an
image sequence and let D(x,y,t) be a binary image
sequence indicating regions of motion; for many
applications image-di¡erencing is adequate to generate
D. Then the MEI E�(x,y,t) is de¢ned as

E�(x,y, t) �
[�ÿ1
i�0

D(x,y,t ÿ i).

We note that the duration � is critical in de¢ning the
temporal extent of an action. During training, we need
to de¢ne � explicitly. Fortunately, to perform real-time
recognitionwe can exploit a backward-looking (in time)
algorithm that can dynamically search over a range of � ,
yielding linear speed invariance in recognition.

In ¢gure 3b we display the MEIs of sitting viewed
over 908. In Bobick & Davis (1996a), we exploited the
smooth variation of motion over angle to compress the
entire view circle into a low-order representation. Here
we simply note that because of the slow variation across
angle, we only need to sample the view sphere coarsely
to recognize all directions.

To represent how motion is moving we enhance the
MEI to form a motion-history image (MHI). In an

MHI, pixel intensity is a function of the motion
history at that point. For the results presented here we
use a simple replacement and decay operator:

H�(x, y, t) �
(
� if D(x, y, t) � 1
max (0,H(x, y, t ÿ 1)ÿ 1)
otherwise

The result is a scalar-valued image where more
recently moving pixels are brighter. Examples of
MHIs are presented in ¢gure 4. Note that unlike
MEIs, the MHIs are sensitive to direction of motion.
Also note that the MHI can be generated by thresh-
olding the MEI above zero. The MEI and MHI
together form a temporal template of movement to be
matched against unknown input motions.

To construct a recognition system, we need to de¢ne
a matching algorithm for the MEI and the MHI. In
Bobick & Davis (1996b) and Davis & Bobick (1997),
we developed and tested a scale and translation invar-
iant technique based upon statistical descriptions of the
MEI and MHI images. We ¢rst collected training
examples of each action from a variety of viewing
angles. For each view of each movement a statistical
model (mean and covariance matrix) is generated for
shape moment parameters of both the MEI and MHI.
The computation of the shape moments includes
weighting by pixel intensities, giving di¡erent
moments for the MEI and MHI. To recognize an
input motion, a Mahalanobis distance is calculated
between a shape moment description of the input and
each of the known movements.

We have implemented a causal segmentation and
recognition system that uses a backward-looking vari-
able time window to achieve speed invariance. The
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Figure 3. Example of someone sitting. (a) Top row contains key frames; bottom row is cumulative motion images starting
from Frame 0. (b) MEIs for each of six viewing directions; the smooth change implies only a coarse sampling of viewing
direction is necessary to recognize the action from all angles.
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simple nature of the replacement operator allows the
construction of a highly e¤cient algorithm capable of
real-time operation on a standard Unix workstation.
For example, one implementation runs at approxi-
mately 13Hz using a colour CCD camera connected to
a Silicon Graphics Indy. The images are digitized to a
size of 160�120 covering movements of duration from
one to two seconds.The matching operation is virtually
no cost once the input image statistics have been
computed; adding more classes of movement does not
a¡ect the speed of the algorithm, only the accuracy of
the recognition.

In summary, the temporal templates are a method
for recognizing movements, matching motion patterns
between input and known models. The only statistics
maintained are the variability of appearance from one
instance to the next. Time is handled implicitly by
developing a matching method that is insensitive to
linear scaling with respect to time, i.e. a simple change
of speed. Furthermore, there is no consideration of
sequence. In fact, overly complicated movements that
overwrite themselves often (self-occulusion in space^
time) therefore give rise to temporal templates that are
unreliable for matching. To recognize a series of atomic
motions requires a more powerful representation of
time and of the statistics of the temporal pattern.

4 . RECOGNITION OF ACTIVITY:
GESTURE IN COMMUNICATION

As de¢ned, activities involve a sequence. The
components of the sequence can either be movements

or static states. If it is explicitly based upon states, then
the sequence is implicitly de¢ned by the movements
that are required to move from one state to the next.

The representation of the sequence de¢ning an
activity can either be explicit and deterministic, or
implicit and statistical. An example of the former case
is that of Rohr (1994) where the positions of silhouette
edges of a walking person are encoded as a one degree
of freedom function of the phase of the gait. These
edges are matched against those of a person in each
input image of a sequence. The gait phase àngle' is
then estimated at each time instant yielding a descrip-
tion of the complete sequence in terms of a trajectory
through the gait phases.

Examples of implicit and statistical representation of
sequences are seen in the recent work on understanding
human gesture (e.g. Starner & Pentland 1995;Wilson &
Bobick 1995). Inspired by the succcessful application of
hidden Markov models to speech recognition tasks,
these methods represent activitiesögesturesöby prob-
abilistic states where both the observed output of a
given state and the transitions made between states are
controlled by underlying probability distributions
(Rabiner & Huang 1993). In the remainder of this
section we will discuss the work in Wilson & Bobick
(1995) because it not only maintains a Markovian
model of the statistics of motion, but also learns the
variation in representation of the imagery required to
span the entire activity.
Two observations motivated the approach. First,

human gestures are embedded within communication.
As such, the gesturer typically orients the movements
towards the recipient of the gesture (Darrell & Pent-
land 1993). Second, in the space of motions permitted
by the degrees of freedom of the human body, there is
a small subspace of that we use in the making of a
gesture. Taken together, these observation argue for a
view-based approach in which only a small subspace of
human motions is represented.

How should a system model human motion to
capture the constraints present in the gestures? There
may be no single set of features that makes explicit the
relationships that hold for a given gesture. In the case of
hand gestures, for example, the spatial con¢guration of
the hand may be important (as in a point gesture, when
the observer must notice a particular pose of the hand),
or alternatively, the gross motion of the hand may be
important (as in a friendly wave across the quad).
Quek (1993) has observed that it is rare for both the
pose and the position of the hand to change simulta-
neously in a meaningful way during a gesture.

We ¢rst presented an approach that represents gesture
as a sequence of states in a particular observation space
(Bobick & Wilson 1995). We then extended that work
anddevelopedatechnique for learning visual behaviours
that (i) incorporates the notion of multiple modelsö
multiple ways of describing a set of sensor data; (ii)
makes explicit the idea that a given phase of a gesture is
constrained to be within some small subspace of possible
human motions; and (iii) represents time as a probabil-
istic trajectory through states (Wilson & Bobick 1995).
The basic idea is that di¡erent models are needed to
approximate the (small) subspace associated with each
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sit down sit down MHI

arms-wave arms-wave MHI

crouch-down crouch-down MHI

Figure 4. Action moves along with their MHIs used in a
real-time recognition system.
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particular state andmembership in a state is determined
by how well the state models can represent the current
observation.The parsing of the entire gesture is accom-
plished by ¢nding a likely sequence of states given the
memberships and the learned transition probabilities
between the states.

The details of the techniques are presented inWilson
& Bobick (1995). The approach is based upon state
models that de¢ne a residualöhow well a given model
can represent the current sensor input.We then embed
this residual-based technique within an HMM frame-
work; the HMMs represent the temporal aspect of the
gestures in a probabilistic manner and provide an
implicit form of dynamic time warping for the recogni-
tion of gesture.

Here we illustrate the technique by way of two
examples. Figure 5öa wave gestureöconsists of a
single model example but shows the use of the HMM.
The model in use is a principal component decomposi-
tion of the input image. The parameters describing
each image are the coe¤cients of projecting the input
image onto a basis set of images, where there is a
di¡erent set for each state of the HMM. The basis set
for a state consists of the most signi¢cant eigenvectors
of the set of images determined to belong that state.
The residual between the input image and the best
reconstruction using the basis set of a state determines
the likelihood that the given state could generate the

input image. Because the basis set determines state
membership but state membership is used to select the
basis set, the entire estimation process is an iterative
expectation^maximization algorithm; we add the
basis set selection step to the traditional Baum^Welch
technique of HMM parameter estimation (Rabiner &
Huang 1993). The di¡erent basis sets are the varying
representation of the activity to which we referred
earlier.

In the ¢rst example, the input data consist of 32
image sequences of a waving hand, each about 25
frames (60680 pixels, grey-scale) in length. The
recovered Markov model, the mean image at each
state, and plots of the memberships and residual for
one sequence are shown in ¢gure 5. The recovered
Markov model allows the symmetry of motion seen in
the plot of membership over an observation sequence.
Some of the observation sequences di¡er in the extent
of the wave motion; in these cases the state representing
the hand at its lowest or highest position in the frame
may not be used. For a new instance of a wave gesture
to be recognized, a high probability parse using the
HMM must be possible.

Our second example describes the position and
con¢guration of a waving, pointing hand (¢gure 6). In
each frame of the training sequences, a 50� 50 pixel
image window of the hand was tracked and clipped
from a larger image with a cluttered background. Fore-

1262 A. F. Bobick Movement, activity and action

Phil.Trans. R. Soc. Lond. B (1997)

0 5 10 15 20 25
0

0.5

1

Time t

0 5 10 15 20 25
0

0.5

1

0 5 10 15 20 25
0

0.5

1

0 5 10 15 20 25
0

0.5

1

0.87

0.13 0.16

0.68

0.16

0.75

0.25

0.11

0.07

0.82

Figure 5. A wave gesture. The recovered Markov model for all training sequences on the left shows the symmetry of the
gesture. The mean image for each state is shown in the middle. On the right is a plot of membership (solid line) and residual
(dotted line) for each state for one training sequence. The exact shape of the plots varies in response to the variance and
length of the sequence.

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


ground segmentation was accomplished using the
known background. The con¢guration of the hand is
modelled by the eigenvector decomposition of the
image windows. The position of the hand is modelled
by the location of the tracked hand within the larger
image. The recovered Markov model is similar to that
of the waving hand in the previous example except now
there are two components of the model of each state. As
before, this gesture is recognized if a highly probable
parse can be generated by the HMM.

The variance of each feature indicates the impor-
tance of the feature in describing the gesture. In this
example both the position and con¢guration of the
hand was relevant in describing the gesture. Had the
location of the hand varied greatly in the training set,
the high variance of the position representation would
have indicated that that position was not important in
describing the gesture. The important point here is that

each state de¢nes the important models associated with
that phase of the gesture.

The use of HMMs to encode the statistical
sequence of movements or states associated with an
activity has both advantages and disadvantages. The
most important positive aspect of HMMs is their
ability to learn the necessary states and transitions
from training examples. Instead of a programmer
explicitly coding the component movements or con¢g-
urations, the learning algorithm will decompose the
activity into natural phases. However, the disadvan-
tage of HMMs is exactly the lack of control one has
over the states recovered. Even if one has some a priori
knowledge about the natural segments of an activity,
it is di¤cult to incorporate them into the framework.
Usually one can only a¡ect the computation by speci-
fying the topology of the state transition network to
be learned.
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Figure 6. (a) Four representative frames (ordered left to right) are shown from one training sequence. (b) The mean loca-
tion of the tracked band in the larger image is shown on the left. The mean image for each state is shown in the middle. On
the right is a plot of membership (solid line), con¢guration residual (dotted line), and the position residual (dash^dot line)
for each state for one training sequence.
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An alternative to HMMs for the recovery of natural
gesture was recently proposed inWilson et al. (1996). In
this approach, a ¢xed, non-deterministic, ¢nite-state
machine representation of the gesture sequence is
employed. Each state is given a description in terms of
the temporal properties of gesture. One such state
would be described as being (i) similar in appearance
to a `rest' state of the gesturer, (ii) undergoing little
motion, and (iii) in this state for a long duration. In
this system only the duration parameters were learned
from training data. The state transitions and descrip-
tions were based on a priori understanding of the
components of a sequence that make up the activity, in
this case natural gesticulations. We demonstrated the
ability to pick out semantically meaningful gestures
comparable to an expert human observer.

Whether using HMMs or some other representation
of activity, the requirements for recognition are the
same: (1) a statistical or deterministic representation of
a sequence of components that comprise the activity,
and (2) a parsing mechanism that can temporally
align the input signal with the known activity patterns.
The knowledge encoded in these systems can be simi-
larly considered as consisting of two elements. The ¢rst
is the appearance or properties of the signal at di¡erent
phases of the activity. While the gesture examples
presented above are de¢ned by individual static
components, the baseball pitching example illustrates
how some or all of the components may be atomic
movements. The second element knowledge is the
speci¢cation of the quantitative temporal relationships
between these components.
What is common between movements and activities

is that neither refers to elements external to the actor
performing them. That is, their occurrence can be
`perceived' in the absence of knowledge of context or of
the actor's interaction with other entities in the scene.
Thus, the knowledge required to perceive movements
or activities may be considered strictly perceptual. In
the next section, we discuss motion-understanding
problems that are not so self-contained.

5. RECOGNITION OF ACTIONS :
REASONING ABOUT SPACE AND TIME

The highest level of motion understanding is action
recognition. Earlier we de¢ned the action recognition
task as requiring an interpretive contextöa set of
constraints on possible explanations for the observed
motions. The discussion of the system of Mann et al.
(1996) for describing moving objects considered the
use of the constraints of physics and measures of simpli-
city to derive likely explanations. The physical
knowledge is exploited by providing consistency
requirements and preference relations that any such
explanation should satisfy.

A di¡erent focus is taken by Pinhanez and Bobick
(Bobick & Pinhanez 1997; Pinhanez & Bobick 1996).
In that work knowledge and the interpretive context
are exploited to link perceptual signals to underlying
actions. The application domain is SmartCamsö
cameraman-less camerasöthat respond to a director's
requests while ¢lming a cooking show. Such cameras

perform inverse video annotation: given some symbolic
description ( c̀lose-up chef ') the system needs to
generate the correct image.

From the perspective of this paper, the most
important aspect of that work is the availability of a
script that describes the actions that are taking place.
These actionsöe.g. the chef is chopping the chickenö
are described using a logical formulation that allows
perceptual inferences to be drawn. For example, the
fact that the chef is chopping the chicken results in the
assertion that the hands are moving and that they are
near the chopping board. These inferences have visual
implications and are exploited to select appropriate
visual routines to perform the camera framing tasks.
(For more details and a demonstration see: http//
vismod.www.media.mit.edu/vismod/arch-
ive, and search for SmartCams.)

Fundamental to high-level action recognition is an
explicit representation of time. One of the weaknesses
of the SmartCam system as reported was a lack of a
temporal reasoning mechanism that could consider
temporal relationships between intervals; actions were
strictly linear sequences. Recently, (Pinhanez &
Bobick 1997) we have introduced the PNF constraint
mechanisms for temporal intervals that supports
reasoning about time and the relationship between
sensors and actions taking place at any given
moment. To construct sophisticated action recognition
mechanisms we need to be able to represent
non-trivial temporal relationships such as partial
ordering. The PNF formulation is a real-time
parsing mechanism, based on Allen's temporal
interval calculus, that is designed to address such
problems.

For example, using PNF it is simple to represent the
action of picking-up-a-bowl as ¢rst the bowl is on the
table, then the hands move towards and grasp the
bowl, and then the bowl is o¡ the table. Given a
collection of such de¢nitions and sensors capable of
detecting events such as hands-touching-bowl or bowl-o¡-
table the system can reason about which actions may
be taking place currently. Using the PNF language it
is also easy to say that A cannot take place at the same
time as B, but both must occur before C for some
action to be considered as having taken place.

While the inferences supported by the system are not
adequate to reason deeply about action (such as model-
ling any deep causality; Israel 1991), many simple
actions become possible to see. By simple, we mean
actions that have direct perceptual implications and
can be recognized without extensive causal reasoning.
Such reasoning is sometimes referred to as shallow
(Jain & Binford 1991) in that no explanatory theory is
present. This is in contrast to systems such as that of
Mann et al. (1996) mentioned above, where a qualita-
tive physics theory is used to generate explanation
based descriptions.

Whether the reasoning is shallow or deep, the knowl-
edge required to perceive actions touches more than
just the actor itself. Contextual or causal relations play
a critical role. From the perspective of knowledge-
based vision, the perception of action is the most
knowledge intensive form of motion understanding.
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6. CONCLUSION: UNDERSTANDING
MOTION

The problem of interpreting motion (`understanding
action') has become a major thrust of computer vision
research. Unlike object recognition, where generic
classes were replaced with speci¢c geometric models to
make the problem tractable, the task of understanding
actions will typically require representations of more
than just geometry and appearance.The motion under-
standing taxonomy proposedömovements, activities,
and actionsöallows one to categorize particular
approaches in terms of the prepresentations and knowl-
edge required to interpret the imagery.

Fundamental to the taxonomy discussed are the
mechanisms necessary to manipulate time. The recog-
nition of movements require only simple linear (speed)
invariance while the detection of activities employs
more capable dynamic time warping methods. ¢nally,
the perception of actions, even actions with direct
visual correlates, necessitates reasoning about qualita-
tive temporal relationships.

One of the utilities of this division of problems is the
ability to immediately identify which techniques might
be applicable to a given task. One cannot expect a
movement-focused algorithm to extend trivially to the
recognition of higher-level action. For example, the
temporal template method described will never
perform generic shop-lifting detection unless the task
can be formulated as detecting a particular movement.

At the heart of the taxonomy are the knowledge and
representations required to support the necessary infer-
ences. Computer vision has developed numerous ways of
representing a cup (Euclidean solids, superquadrics,
spline surfaces, particles); how many ways do we have to
represent throwing abaseball? Or even getting awicket?

The taxonomy of action has its origins in discussions and col-
laboration with Stephen Intille and Claudio Pinhanez. Lee
Campbell, Jim Davis and Andy Wilson also contributed to
the work presented here. The work presented here is sup-
ported in part by a research grant from LG Electronics and
by ORD contract 94-F133400-000.
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